We are very pleased to announce that this year’s Waddington medal winner is Helen Skaer. Her fundamental discoveries have helped shape our understanding of organogenesis, and her impressive range of teaching and outreach activities have inspired countless others.
The Waddington Medal is the only national award in Developmental Biology. It honours outstanding research performance as well as services to the subject community. This year’s medal was awarded at the Biologists @ 100 conference at Liverpool, where the recipient presented the Waddington Medal Lecture.
It is a huge pleasure to nominate Professor Helen Skaer for the BSDB Waddington medal. She is a tireless advocate for our community, and has been teaching, inspiring and supporting developmental biologists for over 50 years. Throughout her career, Helen has been fascinated with understanding how cells are organised/organise themselves to produce physiologically functional organs. Her work unravelling the coordination between diverse cellular behaviours such as cell division, specification, differentiation and migration during morphogenesis has made major contributions to our understanding of organogenesis. Given her outstanding research, inspirational teaching, and her wide regard in the community, we believe she embodies the values the Waddington Medal aims to promote. We are confident that she will give a phenomenal Waddington lecture, that will serve to inspire the whole community.
Helen was one of the very first developmental biologists to tackle the relationship between form and function. During her PhD, Helen focused on understanding how excitable cells are resilient to environmental fluctuations in osmotic and ionic potential, giving her a grounding in cellular physiology. She then moved her focus to epithelial tissues – initially probing the relationship between their structure and their specific physiological attributes. During this phase of her work, she demonstrated that in invertebrates, which lack tight junctions, septate junctions can restrict paracellular flow and so contribute to epithelial tightness. She also pioneered technical developments in the low temperature preservation of material for freeze-fracture, leading to the vitrification of biological samples for electron microscopy.
Through this work, Helen became interested in the cellular activities that underlie the development of epithelial tissues; she set out to understand how intrinsic patterns of gene expression integrate with external signals to define specific cell behaviours. She decided to use the Malpighian (renal) tubules of Drosophila as a model tissue – realising that this system would enable her to combine cellular, genetic and molecular approaches with definable physiological readouts. This choice proved inspired: over the years she has dissected out the distinct cellular and molecular behaviours underlying the development of an epithelial tissue into a physiologically functional organ – pioneering ‘multi-scale’ developmental cell biology long before it became trendy!
Helen’s innovation and determination shine through in both her research and teaching successes. A standout example is from the late 80’s, when Helen demonstrated that the large cells at the tip of the developing renal tubules are mitogenically active, by dissecting open Drosophila embryos and ablating these single cells manually. As students, we loved to hear about Helen ablating renal tubule tip cells by sucking them up finely pulled capillary tubes – it inspired us to think outside the box and believe that anything was possible if you put your mind to it. Using genetic approaches, she then demonstrated that these cells are selected in the tubules by a combination of intrinsic factors and intercellular signalling; through the activity of the proneural transcription factors, whose patterns of expression are regulated by Wnt signalling and by Delta/Notch-mediated lateral inhibition. This was one of the early demonstrations that specific cell lineages outside the nervous system are specified by the refinement of proneural gene expression by lateral inhibition.
Over the years, the work of Helen and her lab has shed light on the regulation of features common to the architecture and function of all epithelia. Many of their findings have contributed to our understanding of vertebrate organogenesis, through their demonstration of conservation in regulatory pathways and networks, in their roles during nephrogenesis and more broadly in the development of tubular epithelia.
Helen has always combined research with an impressive range of teaching and outreach activities. Teaching undergraduate courses in Cambridge, Oxford and Sheffield continuously since 1968, Helen designed and ran courses in developmental biology at all three institutions, including the first interdepartmental course in Oxford across the Biological Sciences/Medicine departments. She has trained over 50 summer vacation and final year students in her lab, many of whom have gone on to do PhDs and some of whom are now University academics teaching developmental/cell biology themselves (e.g. Tanya Whitfield, Keith Brennan, Peter Baumann). Finally, Helen plays a key role in promoting developmental biology in India, giving many talks to college students, and participating in both formal and informal collaborations in the NCBS in Bangalore. She has been a panel member for the India Alliance since its inception – a collaboration between the WT and Indian Department of Biotechnology, supporting and advising scientists across the community.
- Nicolas Tapon
- Kyra Campbell
- Tanya Whitfield
- David Strutt
- Marysia Placzek
5 Key papers
- Skaer, H. (1989) Cell division in the development of the Malpighian tubules of Drosophila melanogaster is regulated by single, specialised cells. Nature 342, 566-569. https://doi.org/10.1038/342566a0
- Denholm, B., Sudarsan, V., Pasalodos Sanchez, S., Artero, R., Lawrence, P, Maddrell, S., Baylies, M. and Skaer, H. (2003) Dual origin of the renal tubules in Drosophila: mesodermal cells integrate and polarise to establish secretory function. Curr. Biol. 13: 1052-1057. https://doi.org/10.1016/S0960-9822(03)00375-0
- Weavers, H., Prieto-Sánchez, S., Grawe, F., Garcia-López, A., Artero, R., Wilsch-Braeuninger, M., Ruiz-Gómez, M., Skaer, H.*, & Denholm, B. (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457:322-326. *corresponding author https://doi.org/10.1038/nature07526
- Bunt, S., Hooley, C., Hu, N., Scahill, C., Weavers, H. and Skaer, H. (2010) Haemocyte-secreted Type IV Collagen enhances BMP signalling to guide renal tubule morphogenesis in Drosophila. Developmental Cell 19: 296-306. https://doi.org/10.1016/j.devcel.2010.07.019
- Weavers, H. & Skaer, H. (2013) Tip cells act as dynamic cellular anchors in the morphogenesis of looped renal tubules in Drosophila. Developmental Cell 27: 331–344. http://dx.doi.org/10.1016/j.devcel.2013.09.020