2024 WADDINGTON MEDAL WINNER: JEAN-PAUL VINCENT

We are very pleased to announce that this year’s Waddington medal winner is Jean-Paul Vincent, Principal Group Leader at the Francis Crick Institute. His fundamental discoveries have helped shape developmental biology as we know it, and his work has created new links between developmental biology and a number of other disciplines.

The Waddington Medal is the only national award in Developmental Biology. It honours outstanding research performance as well as services to the subject community. This year’s medal was awarded at the European Developmental Biology Congress, hosted by the BSDB at Oxford, where the recipient presented the Waddington Medal Lecture.

 

 

Originally trained as an engineer and physicist, JP Vincent became a developmental biologist by accident, when his PhD advisor George Oster, a mechanical engineer turned biologist, suggested that he look at the fluid dynamics of Xenopus eggs. He was lucky to be hosted by John Gerhart for the wet part of this project and was quickly taken by the warmth of the developmental biology community and the range of questions that developmental biology addresses. Since then, JP has been inspired by classical questions of developmental biology such as axis formation, cell fate determination, morphogen gradient formation and tissue renewal, and strived to bring methods from other disciplines to address them. His work has questioned established dogma, uncovered new mechanisms, and brought outsiders into the developmental biology field.

JP’s work has been a firework of exciting and fundamental discoveries that have helped shape developmental biology as we know it. JP’s PhD led him to uncover the subcortical rotation, which specifies the embryonic axis of frog embryos (1). Towards the end of his PhD, molecular biology began to permeate developmental biology and he felt that he had to be part of this revolution. He was thrown in the deep end by joining the lab of Pat O’Farrell and became fascinated by the process of cell fate specification. With this in mind, he developed, in collaboration with Tim Mitchison, the first photoactivable lineage tracer and used this to show that ‘posterior identity’, as recognised by the expression of engrailed, was stable but still open to change in response to signalling.

JP’s interest in the signaling pathways that control engrailed expression led to a love affair with Wnt signaling. In one early line of research, he showed that   Catenin exists in two exchangeable pools, one devoted to cell adhesion and the other to Wnt signaling, suggesting an intimate connection between signalling and morphogenesis (2). This paradigm-building discovery remains integral to our understanding of the Wnt signalling pathway. Influenced by discussions with Peter Lawrence, JP realized that it was important to determine the range of Wnt and other signaling proteins. Over the years, JP has identified many relevant factors and processes (e.g. endocytic trafficking, glypicans and feedback inhibitors) and has demonstrated their function in shaping Wingless morphogen gradients. In recent collaborative work with the group of Yvonne Jones, JP’s group showed how the carboxylesterase Notum inactivates Wnts in the extracellular space and how the glypican Dally-like accommodates the Wnt lipid (3-4). His discoveries, fuelled by extraordinary creativity and scientific playfulness, have provided a comprehensive model for how a paradigm morphogen gradient is created and maintained. His interest in the spread of signalling molecules has led him to another long-standing collaboration, with Guillaume Salbreux. Together, they showed that GFP could be repurposed as a morphogen, a key step towards synthetic developmental biology (5).

Throughout the course of his career, JP has created many new links between developmental biology and other disciplines, most prominently cell biology, physics, structural biology and chemistry. He has contributed to adapting various techniques to the needs of developmental biology. For example, he used HRP fusion proteins to track Wingless by EM. His senior scientific officer, Cyrille Alexandre, was the first to adapt CRISPR to Drosophila. He then devised sophisticated genome engineering approaches to express reporters and modified proteins from endogenous loci. Recently, with Yohanns Bellaiche, he developed optogenetic tools to control gene expression with unparalleled spatiotemporal precision. JP embodies the true spirit of collegiality in our community and generously shares reagents as soon as they are useable.

JP has contributed to a lively discourse within the developmental biology community. He has organised many conferences, including a BSDB spring meeting, two Developmental Biology Gordon conferences and two Jacques Monod conferences on Developmental mechanisms. JP was a member of the BSDB committee from 2000 to 2005 and of the BSCB committee from 2010 to 2015. He has served as an editor at Developmental Biology, Science Signalling and Phil Trans B. He is (or has been) on the scientific advisory board/review panel of various developmental biology departments (Curie’s Unit of Genetics and Developmental Biology, EMBL’s department of Developmental Biology, Institute de Biologie du Development de Marseille, Toulouse’s Centre for Integrative Biology, the Gurdon Institute, VIB’s department of Developmental Biology). He has lectured on morphogens and morphogenesis not only in academic settings but also at the University of the Third Age and to undergraduates at Cambridge and UCL. JP has mentored many young developmental biologists both within and outside his group, and many of his trainees have developed into independent developmental biologists.

  • Alex Gould
  • Ottoline Leyser
  • Eugenia Piddini

Key papers

Seminal early work:

Vincent, J.-P., Oster, G.F., and Gerhart, J.C. (1986). Kinematics of grey crescent formation in Xenopus eggs: The displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol. 113, 484-500. PMID: 3949075

Sanson, B., White, P., and Vincent, J.-P. (1996) Uncoupling Cadherin-based adhesion from Wingless signalling in Drosophila. Nature 383, 627-630. PMID: 8857539

Kakugawa, S.*, Langton, P.F.*, Zebisch, M.*, Howell, S., Chang, T.H., Liu, Y, Feizi, T., Bineva, G., O’Reilly, N., Snijder, A., Jones, Y. @, Vincent, J.P.@ (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature, 519, 187-192. PMID: 25731175

McGough, I.J.*, Vecchia, L.*, Bishop, B., Malinauskas, T., Beckett, K., Joshi, D., O’Reilly, N., Siebold, C., Jones, E.Y@ and Jean-Paul Vincent@ (2020) Glypicans shield the lipid moiety of Wnts to enable signalling at a distance. Nature, 585, 85-90. PMID: 32699409

Staporwongkul, K., de Gennes,M., Cocconi, L., Salbreux,G.*, and Vincent, J.-P.*. Patterning and growth control in vivo by an engineered GFP gradient. (2020) Science, 370, 321–327.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.