All posts by comms

Kathryn Anderson (1952-2020)

We are all saddened by the loss of Kathryn Anderson, who made great contributions to both the UK and International developmental biology community. Please read this obituary, composed by Phil Ingham, who knew her well.

 

My friend and colleague, Kathryn Anderson, who died on November 30th, was a brilliant developmental geneticist who made seminal contributions to our understanding of two major signaling pathways – Toll and Hedgehog – that play fundamental roles both in animal development and human health. Her elegant genetic analyses and profound insights led to numerous important and unexpected discoveries that have established novel biological principles.

 

 

 

In the early 1980s, working as a postdoctoral research fellow with Nobel Laureate Christiane Nüsslein-Volhard at the Max Planck Institute for Developmental Biology in Tübingen, Germany, Kathryn began her dissection of the maternally encoded cascade that determines dorso-ventral polarity in the Drosophila embryo, using a combination of genetic, embryological and biochemical methods. She developed a microinjection rescue assay to show that maternal mRNAs are required for specification of the Drosophila body plan and using genetic and cytoplasmic transplantation experiments made the key discovery that the Toll gene product is necessary and sufficient to define the dorsal-ventral axis. Returning to her alma mater, UC Berkeley, as an Assistant Professor in the mid-1980s, Kathryn set out to clone the Toll gene; her success in this enterprise led to the important and unexpected finding that Toll encodes a transmembrane protein belonging to the class that includes the interleukin-1 receptor, which she and others would later show define a whole new class of proteins that mediate the innate immune response.

 

Using genetic epistasis analysis Kathryn identified genes acting both upstream and downstream of the Toll receptor. Her demonstration that mutations of the tube and pelle genes are epistatic to Toll gain of function established the roles of the adaptor protein and Serine/threonine kinase that they respectively encode in the intracellular transduction of Toll activity. Many of the genes that she demonstrated to act upstream of Toll turned out to encode components of a protease cascade present in the space between the plasma membrane of the egg and the perivitelline membrane that surrounds it. Key to this analysis was the demonstration that the Easter gene encodes a serine protease, the most downstream component of the cascade, that cleaves and thereby activates the Toll ligand, encoded by the spätzle gene.

 

This genetic analysis of the Toll pathway in the fly embryo laid the foundation for characterizing the roles of Toll-like receptors in mammalian innate immunity. Following the initial studies by Bruno Lemaitre and Jules Hoffman (who would later win the Nobel Prize for his contribution) implicating Toll in innate immunity in Drosophila, Kathryn exploited the genetic toolkit assembled in the course of her analysis of the control of dorso-ventral polarity to elucidate the way in which Toll transduces immunity signal. Her work uncovered novel and important players in the immunity cascade, including the peptidoglycan recognition protein PGRP-LC which she showed mediates antimicrobial peptide gene expression in response to gram-negative bacterial infection.

 

Following her spectacular success in unravelling the Toll pathway, Kathryn set out on an entirely new quest to identify genes underlying mammalian embryonic development, using the same forward genetic approach that she had applied to such great effect in the fly. This was an extremely courageous undertaking given the complexity of the mouse as an experimental model, but one that paid off handsomely. To acquire the requisite knowledge and expertise in mouse embryology, she spent a sabbatical year in the laboratory of the late Rosa Beddington at the now defunct National Institute of Medical Research at Mill Hill in north London. Returning to her laboratory at UC Berkeley in 1994 she began the ENU screens that would lead to the isolation of mutations in more than 100 genes identified on the basis of their embryonic mutant phenotypes. In 1996 she accepted an appointment at the Memorial Sloan Kettering Cancer Center in New York where she would spend the rest of her career. Here she began the molecular cloning and characterization of the genes identified by the chemically-induced mutations to define the cellular basis of many fundamental aspects of early mouse development, including neural patterning, germ cell migration, epithelial morphogenesis and the gastrulation epithelial-to-mesenchymal transition.

 

Of particular note was a set of genes that she showed are required for Hedgehog (Hh) signalling in mammals. Significantly, although the Hh pathway was originally discovered in Drosophila, Kathryn demonstrated that these genes are not required for Hh signaling in the fly. The first of these to be identified encodes the small GTPase Rab23, which she showed acts as a negative regulator of the Hh signal transduction pathway downstream of the Hh receptor, Patched, but upstream of the GLI transcription factors that mediate Hh target gene expression. Remarkably, two further genes identified in Kathryn’s screens had homologues that are important in intraflagellar transport in Chlamydomonas. Based on this homology, Kathryn examined the mutant embryos for defects in the cilia, the mammalian equivalent of flagella, and found them to be absent. This discovery led to her key insight of the relationship between the Hh pathway and the primary cilium, an organelle that had until then been largely overlooked. Notably, Kathryn found that many Hh pathway components are localized to the primary cilium and that Hh activity itself can affect this localization. This discovery of the role the primary cilium in Hh signalling represents a major breakthrough in our understanding of this critical pathway, and one which has spawned a multitude of new studies and established the link between Hh signalling and a range of human diseases collectively referred to as ciliopathies.

 

Kathryn’s spectacular transition from Drosophila to mouse developmental genetics put her in the vanguard of the trend towards analyses of more complex model systems, a transformation of the field that we described in our 2003 Nature Genetics review article (PMID: 12610538). Depite her towering presence in the field, she had a quiet and modest demeanour that belied her enormous intellectual powers. Kathryn received numerous accolades in recognition of her many contributions; in 2004, I had the pleasure of introducing her as the George Streisinger Memorial Lecturer at the University of Oregon. In 2012 she was awarded the Thomas Hunt Morgan Medal by the Genetics Society of America and in 2016 she received the Edwin G. Conklin medal from the Society of Developmental Biology. She was an elected member of the US National Academy of Sciences, the American Association for the Advancement of Science, and the American Academy of Arts and Sciences. With her passing the developmental biology community has lost one of its greatest: we will miss her genius and her generosity of spirit in equal measure.

 

Philip Ingham,

Honorary Life President SDBS

Singapore, December 2020

BSDB 2020 Newsletter

Please find the 2020 BSDB newsletter here!

Despite the obvious disruptions to our normal proceedings this year, the 2020 Newsletter is out!. The newsletter of the BSDB forms an essential summary of all that has happened over the previous year, including past and upcoming society meetings (p.g. 5), our treasurer’s reports (p.g. 8), incoming committee members (p.g. 4) and our recent award winners from 2019 and 2030 (from p.g. 10). Please take the time to have a look through the reports of the 2019 Gurdon summer students who all managed to do some great developmental biology during their projects! (from p.g. 27).

Many thanks yet again to Meghana Mortier at the University of Manchester for investing her time and patience in formatting typesetting the newsletter.

Remember, Ito explore the BSDB newsletters of the last 10 years, they are archived on our website.

The Company of Biologists and Journal of Cell Science launch FocalPlane, a new microscopy community site

FocalPlane is a trusted online meeting place to connect people, products, resources and information from the microscopy community.

Microscopy is a discipline that unites biologists across all areas of research. A frequently cited difficulty is the gap in knowledge sharing between microscopy experts and non-experts. Technical language can make the field feel exclusive and intimidating for those wanting to make use of current microscopy techniques. In response, The Company of Biologists and Journal of Cell Science have created a new community resource. FocalPlane is a community website for microscopists and biologists alike to share microscopy news, events and resources.

A Scientific Advisory Board has been appointed to support the site alongside its own dedicated Community Manager. Each of the five Advisory Board members bring their own microscopy specialism, making FocalPlane a centre of expertise. “We’ve been looking forward to creating this resource for a long time, to bring the biological research community [together] with the optical microscopy development community,” says Advisory Board member, Professor Ricardo Henriques (University College London, UK). The community site is free to access and users can register for a free account to post their own contribution. FocalPlane will host news, interviews, opinions, tools, job listings and events to help promote interactions and foster connections. “We encourage you to make the site part of your online routine, and look forward to many interactions with you all,” says Sharon Ahmad, Executive Editor, Journal of Cell Science.

FocalPlane is the third community site launched by The Company of Biologists, following in the successful footsteps of the Node and preLights. The Node, now in its tenth year, serves the developmental biology community, whereas preLights is a preprint highlighting service featuring a team of over 200 early-career researchers. Journal of Cell Science, which hosts the FocalPlane site, has a long history of publishing papers relating to microscopy. The journal was established in 1853 as ‘Quarterly Journal of Microscopical Science’ and the archives showcase the evolution of microscopy over time.

Download the full press release here.

Postponement of ISD/BSDB Joint meeting

The 2020 ISD/BSDB Joint meeting, originally planned for September this year, has been postponed due to concerns about Covid-19.  The meeting will be postponed by two years in order to avoid a clash with the autumn 2021 ISDB meeting.

The ISD/BSDB meeting will now take place on  4-8 September 2022. It will still take place in the beautiful setting of Valletta Malta. Registration will open in early 2022.

Waddington Medal Winner 2020: Ottoline Leyser

The Waddington Medal is the only national award in Developmental Biology. It honours outstanding research performance as well as services to the subject community. The medal is awarded annually at the BSDB Spring Meeting, where the recipient presents the Waddington Medal Lecture.

We are very pleased to announce that this year’s Waddington medal winner is Professor Dame Ottoline Leyser DBE FRS. After having served on the BSDB committee and then as treasurer (1999-2009), and only recently having stepped down as our chair, her efforts in supporting our community are well known. This prize will add to

a number of Ottoline’s awards that include listing in the 2017 New Year Honours list as DBE for her services to plant science, science in society and equality and diversity in the sciences. She has also been awarded the Society of Experimental Biology’s President’s Medal (2000), the Royal Society Rosalind Franklin Award (2007), the International Plant Growth Substance Association’s Silver Medal (2010), the UK Genetics Society Med

al (2016) and the EMBO Women in Science Award (2017). She is also a fellow of the Royal Society, an foreign associate of the US National Academy of Sciences, a member of EMBO and the Leopoldina. So, we are very pleased to be able to add the 2020 Waddington medal to this list, in recognition of her contributions to UK Developmental Biology research and our community.

Ottoline’s career began as an undergraduate and then PhD student in the Department of Genetics at the University of Cambridge. She then travelled to Indiana University as part of her post-doctoral research before establishing her lab through a lectureship at the University of York in 1994. In 2011 she was instrumental in establishing the Sainsbury lab in Cambridge, where she is now director.

“Ottoline’s current research programme remains refreshing and exciting, embracing computational modelling, quantitative traits and selective breeding to give an integrated systems view of the regulation of plant form”. Tanya Whitfield and Nick Monk, University of Sheffield.

Ottoline’s work has resulted in huge advances in our knowledge of hormone action during the control of branching in plant development. Notable contributions include being among the first to exploit the advantages of Arabidopsis as a model species to study hormone action. In doing so, she revealed the mechanism by which the classical plant hormone auxin act

s, having identified the auxin receptor in collaboration with Mark Estelle. In addition, she has do

ne pioneering work in understanding the function of MAX genes in controlling branching. Her work exemplifies how a creative application of inter-disciplinary approaches, experimental embryology and genetics can be combined together to understand the fundamental principles of development. In doing so, it represents the very best of developmental biology and communicates clearly the excitement that can derived from research in our subject.

“She has also been a great advocate for Science, Women, and developmental biology in the political arena as well as for the general public”. Claudio Stern (University College London) and Enrico Coen (John Innes Centre).

Alongside her research career, Ottoline has driven many initiatives for improve equality and diversity in the Sciences. One of her best-known contributions has been the publication of her booklet “Mothers in Science: 64 ways to have it all”. Her approach here was to lead by example, and has proven to be very effective. We encourage our members to read recent interviews with Ottoline that can be found in Development and the Royal Society of Biology.

“When I was pregnant with twins and trying to run my newly-formed research group I came across Ottoline’s little book “Mothers In Science”. It was so important to me, and is just one example of the many things that Ottoline has done that have been important to so many people.” Sally Lowell, University of Edinburgh.

Ottoline continues to make substantial contributions to both teaching and research aspects of the Developmental biology community. Recent examples include serving on the Editorial Board of Development, sitting on the Nuffield council on Bioethics, and being a Member of Council of the Royal Society. She has been co-Editor in Chief for Current Opinion Plant Biology.  Ottoline is also a committed teacher of developmental biology, and is the joint author of the textbook Mechanisms in Plant Development (Leyser and Day, 2003, Blackwell Science Ltd).

 

Selected papers:

Leyser HM, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993). Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364:161-4.

Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998).  Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371-3.

Sabatini, S; Beis, D; Wolkenfelt, H; et al. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 99: 463-472.

Gray, WM; Kepinski, S; Rouse, D; et al. (2001). Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271-276.

Stirnberg P, van De Sande K, Leyser HM (2002).  MAX1 and MAX2 control lateral shoot branching in Arabidopsis. Development 129:1131-41.

Sorefan, K; Booker, J; Haurogne, K; et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. (2003). Genes & Development. 17: 1469-1474.

Booker, J; Auldridge, M; Wills, S; et al. (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology. 14:1232-1238.

Kepinski S, Leyser O (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446-51.

Shinohara N, Taylor C, Leyser O (2013).  Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane.  PLoS Biol. 11:e1001474.

Acknowledgements: B.Steventon would like to thank Tanya Whitfield, Nick Monk, Claudio Stern and Enrico Coen for their contributions to this text.