Advocacy

To promote Developmental Biology, we should have our elevator pitches ready at all times – whenever there is an opportunity to talk about our discipline – be it to the public, students, fellow scientists or policy makers. This is a first attempt at providing a concise rationale and ideas that can be woven into such conversations. We are certain that the arguments presented can still be improved and complemented, and would like to invite you to send in your ideas, potential corrections and suggestions for improvement, additions, new arguments and/or potential links that will further strengthen the message we want to convey (Andreas.Prokop@manchester.ac.uk). If you would like to use some of the ideas currently presented, please download PowerPoint slides with the advocacy information here. If you are already active in science communication or plan to do so, please, also have a look at our public engagement outreach collection which can be found here.

 

Why should we engage in Developmental Biology?

Developmental Biology enquires about the fundamental processes that underpin the fertilisation of an egg cell and its step-by-step transformation into the fascinating complexity of a whole organism (Box 1).

Box 1: Some definitions of Developmental Biology

  • Developmental Biology is the causal analysis of the cellular mechanisms that drive processes of growth, pattern formation and morphogenesis (A. Martínez Arias)
  • Developmental Biology is the study of the processes by which organs grow and develop. Modern developmental biology studies the genetic control of cell growth, differentiation and morphogenesis, which is the process that gives rise to tissues, organs and anatomy, but also regeneration and ageing (after L. Wolpert)
  • Developmental biology is the study of the process by which animals and plants grow and develop, and is synonymous with ontogeny (Wikipedia).

At first sight, Developmental Biology could be viewed as an academic discipline driven by mere curiosity and, hence, to be of little relevance to the big challenges of population health or sustainability. On the contrary, Developmental Biology – shoulder-to-shoulder with Physiology[1] – is arguably the most important biological discipline we have. Here we will explain this statement[2].

(1) Developmental defects in humans are very abundant (Box 2). Therefore, studying the underlying mechanisms and causes, as an essential remit of Developmental Biology, addresses the key challenge of population health. Sustainability of food resources is another major global challenge, and Developmental Biology can provide key strategies to improving crop and plant cultivation (see Mathan et al., 2016, Development 143, 3283ff. — LINK; further arguments will follow).

Box 2: Statements from the literature illustrating the abundance of developmental defects in humans

  • The frequency at which all classes of developmental defects occur is thought to be … exceeding half of initial pregnancies.
  • Major developmental defects … occur in approximately 3% of live births.
  • In 1995, major developmental defects accounted for approximately 70% of neonatal deaths (occurring before 1 month of age) and 22% of the 6,500 infant deaths (before 15 months of age) in the US.
  • Approximately 30% of admissions to pediatric hospitals are for health problems associated with such defects.

source: Scientific Frontiers in Developmental Toxicology and Risk Assessment, 2000, National Academic Press, Washington DC, pp.354; edited by the National Research Council (LINK)

(2) Developmental Biology (like Physiology) is asking fundamental questions at the level of whole organisms, organs or tissues (Box 3). Notably, this is the level at which diseases become manifest. For this reason, Developmental Biology has been, and continues to be, most effective in delivering explanations for diseases or medically relevant processes including infertility, neonatal death, birth defects (e.g. deformation, body growth abnormalities, developmental brain disorders, blindness, deafness), cancer, wound healing, tissue regeneration (regenerative medicine including stem cell biology), etc.

Box 3: Fundamental questions asked by developmental biologists – and how they translate into biomedical application

  • What processes lead to fertilisation and the initiation of development? How can we overcome infertility and childlessness?
  • How do single fertilised egg cells, or later on groups of progenitor cells, generate the enormous cellular diversity of an organism and its organs and tissues? How do stem cells generate whole tissues or organs – for example in regeneration, wound healing or tissue engineering?
  • How do cells, which originate from common ancestors and contain the same genetic information, adopt different fates? How do cells change their identities and behaviours – for example in cancer?
  • How do tissues and their cells know when to stop growing? How can cells evade growth control – for example in tumour growth?
  • How is the formation of different cells/tissues coordinated in space and time? What are the patho-mechanisms underlying birth disorders?

(3) By asking fundamental questions at the level of organisms, organs and tissues, Developmental Biology-related research is a generator of new ideas and concepts (Box 4). These concepts essentially underpin the modern biomedical sciences and include cell signalling, tissue and body patterning, growth regulation, cell migration or morphogenesis; they form the basis for contemporary research into stem cells, cancer, wound healing, regeneration or ageing.

(4) Developmental Biology is exciting and powerful because it reaches across the different levels of biological complexity and explanation; phenomena at the level of organisms, organs or tissues can ultimately be understood only by tracing them back to events at the level of genes and cells. Consequently, Developmental Biology embraces disciplines such as genetics, molecular biology, (stem) cell biology, biochemistry, biophysics as well as evolutionary biology.

(5) Developmental Biology capitalises on the principle of evolutionary conservation of genes, mechanisms and concepts. Thus, it makes use of suitable model organisms, down to experimentally and genetically amenable invertebrates, which provide an efficient and powerful strategy to generate new ideas, concepts and understanding – before validating these in higher organisms including their medical application in humans (LINK). This discovery pipeline has been a central driver for the enormous contributions that Developmental Biology has made and continues to make to the biomedical sciences.

Box 4: A metaphor explaining how Developmental Biology works
Understanding a combustion engine requires investigating its single parts, such as the sparking plug, cylinder or crank shaft. For a developmental biologist it is not sufficient to understand how each of these parts works (and then publish a nice paper about it), but new understanding of these single elements needs to be linked back to the function of the entire engine, thus revealing the true relevance of new discoveries and developing conceptual understanding of the mechanistic networks that explain how the engine works. Only with this systemic understanding can engine faults be successfully diagnosed and eventually repaired.

————————–

[1]   In the sense used here, Physiology comprises disciplines like immunology or functional studies in the field of neurobiology

[2]    Arguments and examples given so far concern studies of animal development, and those for plant development will follow soon

Comments are closed.

Powered by WordPress. Designed by WooThemes